LECTURE 1

Developmental Overview:
Strength of Comparative Analysis Between Organisms

1. Course Basics

Required text: Development of the Nervous System (3rd edition) by Sanes, Reh and Harris.

Optional Text: The Coiled Spring by Ethan Bier

Additional References:
1) Molecular Biology of the Cell by Alberts, Bray, Lewis, Raff, Roberts & Watson
2) Principles of Neural Science by Kandel, Schwartz, and Jessell

Course will also include material just in lectures since the field is very fast moving and changes year to year. Lecture notes and diagrams are posted on course website.

Familiarity with molecular biology and genetics is strongly recommended

Exams: Two midterms and a final (based only on material presented in class)

General philosophy regarding course: Two problems concerning facts:
1) Too many of them, overwhelm memory and distract from principles
 Goal: provide minimum number of facts needed to establish concepts.
2) Facts on their own have no meaning. Need to understand an experiment and how it is interpreted. Interpretations of the same facts can change.

2. Developmental Issues in Neurobiology

Mechanisms of early pattern formation
Development as a series of simple events
Fate maps vs. cell determination
Establishment of dorsal-ventral polarity in the egg:
 Maternal determinants = morphogens/environmental factors
 Zygotic genes implement patterning
Gastrulation/Initiation of morphogenesis
 Subdivision of D/V axis into three germ layers
 Inner layer: endoderm- gut
 Middle layer: mesoderm- muscle, heart, skeleton, connective tissue
 Outer layer: skin, nervous system
Neural Induction: Subdivision of ectoderm into neural vs non-neural domains
Neural Competence: Establishment of early neuronal potential
Lateral Inhibition: Mutual inhibition among cells in equivalence groups
Birth of neuronal precursor cells = neuroblasts in CNS and SOPs in PNS
Neuronal precursor proliferation: determined or stochastic lineages
Neuronal Differentiation
Establishment of crude wiring diagram
 Axon navigation (or pathfinding)
 Synaptic formation (target selectivity)
Experience driven refinement of initial map
Learning and memory
3. The Model Systems

VERTEBRATES

A. Humans

Advantages
- Many diseases - self reporting mutants (>5,000 genetically based diseases) - some good family pedigrees
- Genome sequence complete
- Plasticity - injury and recovery
- Detailed behavior/ontogeny - critical periods e.g. spatial relationships; language

Disadvantages
- Fetal material hard to get but possible
- No experimental access

B. Monkeys

Advantages
- Developmental connections and physiology - postnatal
- Very similar to humans

Disadvantages
- Fetal experiments difficult: embryos inaccessible (inside mother)
- No genetics

C. Cats, Ferrets, and Dogs

Advantages
- Visual system - born immature
- Still very human like brains
- Dog genome and well established breeds
 - Map disease genes: (e.g., epilepsy in Belgian Shepherds and poodles)
 - Identify genetic basis of dog behaviors (e.g., “eye” in sheep dogs)

Disadvantages
- No genetics for cats or ferrets

D. Rats and Mice

Advantages
- Still mammals - homologous brain areas/cell types and developmental sequence
- Gene knockouts by homologous recombination routine in mice
- Significant mutant collection - weaver, staggerer, walzer, realer
- Construction of mosaic embryos possible (part mutant, part normal)
- Source of primary cells for culture

Disadvantages
- Unbiased genetic screens difficult
- Hard to study early mutants (resorbed by mother); fetal experiments difficult
- Development relatively slow (months)

E. Birds: Chicks, quail (experimental); crows, parrots (behavior)

Advantages
- Genome sequence known for chicken
- Accessibility - outside of mother
- Well suited for embryological manipulation - tissue grafts between chick and quail
- Evolution of brain organization: Conserved circuits?
- Some birds highly intelligent (crows and parrots)
- Neuronal circuitry for sensory processing similar to mammals (more later)

Disadvantages
- Little genetics; fetal experiments difficult
F. Amphibia
Advantages
Still a vertebrate (*Xenopus laevis* and *Xenopus tropicalis*)
Accessibility of embryo - pond no shell
Excellent experimental embryology (particularly the larger *X. laevis*): grafting, induction studies (e.g., animal caps), RNA injection into identified blastomeres, interruption of gene function with morpholinos (block translation of specific RNAs)

Disadvantages:
Difficult to make transgenic animals

G. Zebrafish
Advantages
Good genetics: genome sequence, many existing mutants, morpholinos
Easy examination of morphological defects (clear embryos)
Embryological manipulations still possible (not as easy as Xenopus)
Rapid development
Transgenics possible

Disadvantages
Cannot easily target genes for disruption

H. Flies: *Drosophila*
Advantages
Excellent genetics: genome sequence, unbiased genetic screens (morphological, behavioral, identify interacting genes), targeted gene disruption/ tagging, RNA-interference (RNAi), easy transgenesis, gene mis-expression studies.
Mosaic analysis - where gene acts - e.g., signals versus receptors; nerve vs. muscle; eye vs. brain
Fast generation time (2 weeks)

Disadvantages
Miniature nervous system: embryological manipulations difficult
Not a vertebrate

I. Nematodes: *Caenorhabditis elegans* (*C. elegans*)
Advantages
Excellent genetics: genome sequence, hermaphrodites - self fertilization, targeted gene disruption possible, RNAi
Few cells - 959 cells -302 neurons
Morphology and development fully characterized - serial EM reconstruction
-> all cells and connections known and named
Full cell lineage known - time lapse microscopy of whole of development
Laser ablation

Disadvantages
Structurally poor external morphology
Even less similar to vertebrates than flies (61% fly genes have human counterparts vs. 43% of *C. elegans* genes)

INVERTEBRATES