A. Trophic Factors

1. TROPHIC FACTORS AND CELL DEATH
 Experiment: Cell death in the NS-Muscle (Target) removal & grafting
 • Removing muscle/limb → less motor neurons form =

 • Grafting another muscle/limb → more motor neurons form =

 → The survival factor/signal is known as a ________________
 → Injection of trophic factors in place of missing muscle/limb attracted axons and
 allowed cells to survive.

 Effects of Trophic Factors
 • Survival of presynaptic neurons
 →

 • Axonal Pathfinding cue - help attract/guide axons until they reach the target
 →

2. NERVE GROWTH FACTOR (NGF)
 NGF is an example of a trophic factor that activates tyrosine signaling in the cell body. It
 gets picked up at the growth cone of axons and transported back to cell body via
 ___________________________. (Since it is a trophic factor, it is required for cell
 survival & acts as a guidance cue for axons as well)

 Experiment: NGF injection
 -Injection of NGF into brain → caused more axons to grow towards site of injection
 -Injection of α-NGF antibody (receptors cannot interact with NGF) → neurons do not
 extend axons where they normally would & eventually die
 -Neurons with cut axons would not be able to transport trophic factors back to the cell
 body and die → If injected NGF on top of the cell body, the cell could still survive
Experiment: 3 Chamber Experiment

- Neurons are placed in central chamber “A”
- With a thin layer of Vaseline underneath (axons are able to grow past it but it forms a seal against NGF)
- No NGF in any chamber → all neurons died

1.) Add NGF to all 3 chambers

2.) Add NGF to central chamber “A” only

3.) Add NGF to chambers “A” and “C”

4.) Add NGF to Chamber “C” only

Conclusions:

3. **NGF RECEPTORS**

 The NGF receptor is a composite of 2 types of receptors:
 - _______ = High affinity receptor
 - _______ = Low affinity receptor

 Need both to form active receptor

 - Other NGF-like trophic factors (BDNF, NT4/5, NT3) also activate other Trk receptors to contribute to cell survival
 - Trk Receptors are in the RTK family → RTK signaling → activate MAPK → change gene expression
 - RTK signaling phosphorylates MAPK or AKT → travel to nucleus → phosphorylate CREB → activate Bcl2 expression (decrease cell death)
<table>
<thead>
<tr>
<th>Trophic Factor</th>
<th>Activated Receptor</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF</td>
<td>TrkA</td>
<td>Involved in Sympathetic ganglia (reaction to foot/tail pinch)</td>
</tr>
<tr>
<td>BDNF & NT4/5</td>
<td>TrkB</td>
<td>Involved in motor neurons & some sensory neurons (whisker pad sensation & pain)</td>
</tr>
<tr>
<td>NT3</td>
<td>TrkC</td>
<td>Involved in motor neurons & some sensory neurons (propioception)</td>
</tr>
</tbody>
</table>

4. RTK SPECIFICITY

The Big Question: How is RTK signaling made selective? (Why can activation of the same Ras/MAPK pathway have different effects on different cells?)

1.) Different developmental history of cells lead to different responses
 Ex.

2.) Timing & kinetics (Duration/strength of signaling)
 Ex.

Experiment: Chimeric receptors (joining different domains of the NGF and EGF receptors)
- Extracellular (outside) domain determines the specificity for the trophic factor
- Intracellular (inside) domain determines the kinetics of signaling

 - EGF (extracellular domain)/NGF (intracellular domain)

 - NGF (extracellular domain)/EGF (intracellular domain)