Week 2 Handout

A. Patterning Molecules
 1. TRANSCRIPTION FACTORS
 • Sequence specific DNA binding proteins
 • Activators - turn gene expression on
 • Repressors - turn gene expression off \(\rightarrow \) has priority - always wins over activators
 • What are the conditions for gene expression?

 • Experiment: Fused regulatory region of Dpp to coding region of lacZ gene
 (makes Beta-Galactosidase turns cells blue) \(\rightarrow \) expressed lacZ gene in same
 pattern as Dpp (dorsal epidermis) = blue skin
 \(\rightarrow \) What does this show?

 2. SECRETED SIGNALING MOLECULES
 • How do cells communicate via secreted signaling molecules?

 3. MORPHOGENS
 • What two criteria are needed in order for a molecule to be a morphogen?
 Give an example.

B. Dorsal-Ventral Axis Establishment in Flies (Drosophila)

 What is a maternal gene? Give an example.

 What is a Zygotic gene? Give an example.
Fill in the germ layers of the drosophila embryo as discussed in class and what they give rise to.

Fill in the appropriate genes/molecules that help establish the D-V axis in flies and their functions.

What genes are activated at **NO** levels of Dorsal (Dorsal-Ectoderm)?

What genes are activated at **MEDIUM** levels of Dorsal (Lateral-Neuroectoderm)?

What genes are activated at **HIGH** levels of Dorsal (Ventral-Mesoderm)?
How does the dorsal gradient ensure Rho is expressed only in the lateral region of the embryo?

Describe what happens in the following mutants.
 • Sna- =
 • Twi- =
 • Mutating the binding site for Sna in the Rho gene =
 • Mutating the binding site for Sna in ALL the neuroectodermal genes =

C. Dorsal-Ventral Axis Establishment in Frogs (*Xenopus*)

Fill in the germ layers of the vertebrate embryo and what they give rise to.
Describe how the D-V axis is formed in the frog embryo.

1. The mother establishes the ________and _________hemispheres in the unfertilized egg.
2. The is egg is fertilized and the sperm entry point determines the _________ pole
3. Cortical rotation occurs and _____________________→ ___________________________ when moved towards opposite end (dorsal pole)
4. _______(TF) activates expression of mesoderm inducing factors (MF) in vegetal hemisphere & inhibit response to MFs in those same cells
 → ___________________________ - MFs will diffuse and only have an effect on neighbors
5. Beta-Catenin (TF) is a morphogen with higher levels _________and low levels________________. It helps subdivide the _____________into the different tissue domains (Spemann organizer, heart/muscle, blood).
6. Spemann organizer is established at the _________end of the mesoderm. It gives rise to the _____________(transient rigid “backbone” that acts as a source of neural signals→ secreted into dorsal animal hemisphere)
7. _______________(Sog in flies) activates ____________development by repressing _____________(Dpp in flies), which activates ________________development.