Meiosis and the Sexual Life Cycle

Key Concepts

• Heredity → Transmission of traits from one generation to the next

• Genetic Variation

• Sexual Life Cycle: alternation between fertilization and meiosis

• Diploid vs Haploid

• Need to understand the difference between Mitosis and Meiosis
Asexual Reproduction “CLONES”

Involves Mitosis: 1 → 2 identical progeny

Sexual Reproduction Provides “Diversity”

2 genetically distinct cells → 1 unique offspring
(involves meiosis)

Gametes: reproductive cell
Haploid: 1 complete set of chromosomes

1n = 1 set of chromosomes

2n = 2 sets of chromosomes (Diploid)

2 gametes (1n each) fuse fertilization Zygote (2n)
Chromosomes

Humans: \(n = 23 \) each with a unique in shape and size

- 22 autosomes
- 1 sex chromosome \(X \) or \(Y \)

\[\text{Diploid (2n) = 46 chromosomes} \]

Somatic cells: 2n

Gametes: 1n
Chromosomes

Karyotype

• Ordered visual representation of the chromosomes in a cell

• Characteristics: based on length, centromere position, and staining pattern!

Normal: 46, X Y

Abnormal: 47, X Y, +21
Chromosomes

Using Karyotype: to Scan for genetic abnormalities using FISH (Fluorescent in situ hybridization)

Fluorescent DNA probes - which hybridize to chromosomal DNA

5'-AGTCTCCGAC-3'
3'-TCAGAGGCTG-5'

Abnormal: 47, X Y, +21
Chromosomes

Somatic Cells:
- 22 pairs of autosomes (non-sex chromosomes)
- 2 sex chromosomes (XX or XY)

Homologous Chromosomes (Very similar but not identical!)

- Same order of genes (important!!!)
- Length is the same
- Position of centromere is the same

DNA is not identical - WHY?

Maternal and paternal contribution

What's the advantage of having 2 copies? Increase Diversity, Redundancy promotes Viability
Meiosis: Overview
process to make Haploid Gametes

• 2n → 1n
• 1 set of all chromosomes in gametes
• Increase diversity

![Sister chromatids](image)

2 identical progeny

• Meiosis I
 • Homologs line up at Metaphase (I) plate
 • Cross-over

• Meiosis II (very similar to mitosis)
 • Sister chromatids separate

![Cross over](image)

4 cells - all 1n

05-10-16 Lecture 12
Meiosis increases DIVERSITY

(1) Independent Assortment of Chromosomes

KEY - In Metaphase I - each sister chromatids may line up randomly → maternal or paternal pair may orient facing different spindle poles

```
2^n = 4
2^{23} = > 8 million
```

Key
- Maternal set of chromosomes
- Paternal set of chromosomes

Possibility 1
- Two equally probable arrangements of chromosomes at metaphase I

Possibility 2
- Metaphase II

Combination 1
- Combination 2
Combination 3
- Combination 4

Daughter cells
Meiosis increases DIVERSITY

(2) Recombination “cross over” between homologous chromosomes.

Synapsis
(DNA exchange)

Tetrad (physical site of cross over)

Recombination

4 different Gametes
Meiosis increases DIVERSITY

Details of Synapsis in Prophase of 1 of Meiosis

1. Homologous chromosomes pair up

2. DNA info is traded between homologs
 • DNA intertwines : Chiasma
 • Cross over events
 • Enzyme cuts DNA at Chiasma and rejoins them back together

 “HOMOLOGOUS RECOMBINATION”

3. Recombinants are different from each other
 • Part maternal
 • Part paternal

4. Increases DIVERSITY!!!

5. 4 different Gametes
Stages of Meiosis

• **Meiosis I**
 • **Prophase I**
 • Chromosomes condensed
 • Pairing of homologs
 • Cross over/ intertwining at the Chiasma
 • Nuclear envelope is intact - *WHY?*
 • Enzymes cut DNA and rejoin (takes a long time – weeks!)
 • When completed: Recombinants made
 • At the end of Prophase I – nuclear envelope disassembles

 • **Metaphase I**
 • Homologs line up at the metaphase plate

 • **Anaphase I and Telophase I**
 • Homologs separated

 • Results in 2 daughters: different, with recombinant chromosomes
 • Does not go back into interphase
 • Does not reform nuclear envelope
 • Does not decondense DNA

 • Go directly to **Meiosis II**
Stages of Meiosis

- **Meiosis II** - no S Phase - Start with 2 cells
 - **Prophase II**
 - Another spindle assembles at a right angle to previous one
 - The rest is similar to Mitosis

Metaphase II
 - Sister chromatids line up at the metaphase plate

Anaphase II and Telophase II
 - Sister chromatids separated
 - Results in 4 cells (gametes): different, with recombinant chromosomes
 - Gametes all 1n!
Meiosis

INTERPHASE

MEIOSIS I: Separates homologous chromosomes

PROPHASE I

METAPHASE I

ANAPHASE I

- **Centrosomes (with centriole pairs)**
- **Sister chromatids**
- **Chiasmata**
- **Spindle**
- **Tetrad**
- **Chromatin**
- **Homologous chromosomes separate**
- **Sister chromatids remain attached**

Figure 13.8

- Chromosomes duplicate
- Homologous chromosomes
- Tetrads line up
- Pairs of homologous chromosomes split up
Meiosis

Prophase II
- Cleavage furrow

Metaphase II

Anaphase II
- Sister chromatids separate

Telophase II and Cytokinesis
- Haploid daughter cells forming

Meiosis II: Separates sister chromatids

During another round of cell division, the sister chromatids finally separate; four haploid daughter cells result, containing single chromosomes.

Two haploid cells form; chromosomes are still double.

Figure 13.8
Compare and Contrast

Meiosis and Mitosis

- DNA Replication

 Both start here

 Meiosis: no S phase between I and II

- # of Divisions

 Mitosis: 1 → cells identical

 Meiosis: 2 → cells different

- Synapsis

 Not in Mitosis, only in Meiosis I (Prophase I)

- Line up at plate

 Mitosis: sister chromatids

 Meiosis I: homologs

 Meiosis II: sister chromatids

- Daughter cells

 Mitosis: → 2 identical cells

 Meiosis: → 4 unique (haploid – 1n)

When 2 unique gametes fuse: Zygote – Increases Diversity!!