regular spiking

spike frequency accommodation

bursting
Tonic firing mode

Oscillatory mode

One burst of 2-5 action potentials at high frequency (up to 200 Hz)

Leresche et al. 1991
Thalamic Relay Neuron

Burst Tonic firing

Rebound Burst

Deschenes et al. 1984
Cd$^{++}$ blocks all V-gated Ca$^{++}$ channels
Ni$^{++}$ blocks T-type V-gated Ca$^{++}$ channels
The transient (T-type) Ca\(^{++}\) current \(I_T\)

Activation protocol: Hold the neuron at -90 mV and then step to different potentials

Inactivation protocol: Hold the neuron for a “long time” (\(t \gg \tau_h\)) at different potentials and then step to -30 mV

Hernandez-Cruz & Pape 1989
Kim et al 2001

A

\[V_m = -70 \text{mV} \]

\[+/+ \]

T-type Ca\(^{++}\) channel KO

\[-/- \]

(pA) -200 -400 -500 -600 -800 -1000

B

\[V_m = -80 \text{mV} \]

\[+/+ \]

T-type Ca\(^{++}\) channel KO

\[-/- \]

(pA) 200 400 500 600 700 800 900 1200 1400

Kim et al 2001
The T-type Ca\(^{++}\) channel

Channel name Cav3.1
Description voltage-gated calcium channel 1 subunit
Other names T-type, 1G, CavT.1
Molecular information human: 2171aa, O43497, NP_061496, chr. 17q22, CACNA1G (ref. 1)
rat: 2254aa, O54898, AAC67372,
mouse: 2288aa, Q9WUB8, NP_033913
(see Comments)
Associated subunits no biochemical evidence, small changes induced by 21 (ref. 2) and 22 (refs. 3,4)
Functional assays voltage clamp, calcium imaging
Current ICa,T
Conductance 7.5pS (ref. 1)
Ion selectivity Sr\(^{2+}\) > Ba\(^{2+}\) = Ca\(^{2+}\) (ref. 5)
Activation Va = 46mV; τa = 1ms at 10mV (ref. 6)
Inactivation Vh = 73mV; τh = 11ms at 10mV (ref. 6)
Channel distribution brain, especially soma and dendrites of neurones in olfactory bulb, amygdala, cerebral cortex, hippocampus, thalamus, hypothalamus, cerebellum, brain stem, heart
Physiological functions thalamic oscillations18,19, possibly cardiac pacemaking
Cs+ blocks the mixed cationic current I_h
The channel underlying I_h in thalamic neurons is called HCN4.
HCN4 is permeable to both Na$^+$ and K$^+$ ions with a preference for K$^+$ ions.
Under physiological ionic conditions the reversal potential of I_h is -40 mV, i.e. somewhere in between E_K and E_{Na}.
Hence, when HCN4 is open but V_m is -40 mV no net current flows through the channel.
Generally, however, HCN4 is closed at -40mV.
The hyperpolarization activated current I_h

HCN4 opens at hyperpolarized potentials

HCN4 does not inactivate; i.e. at hyperpolarized potentials it remains open.
HCN4 de-activates, i.e. closes, at depolarized potentials.
Activation of HCN4 is slow

McCormick&Pape1990
Channel name: HCN4 (refs. 1–4)

Description: hyperpolarisation-activated, (cyclic nucleotide-gated) cation channel

Other names: HAC4, BCNG3

Molecular information
- **human**: 1203aa, Q9Y3Q4, AJ132429, chr. 15q24-q25, \(HCN4 \)
- **rat**: 1198aa, Q9JKA7, AF247453, chromosomal location not established
- **mouse**: AF064874, chromosomal location not established

Associated subunits: not established

Functional assays: voltage clamp

Current: \(I_h \) or \(I_f \) or \(I_q \)

Conductance: not established

Ion selectivity: \(K^+ \), \(Na^+ \) (\(pNa/pK \approx 0.2 \)); divalents do not permeate

Activation: \(V_{0.5} = 65mV \) to \(100mV \); \(\tau_a = 260ms–30s \) at \(140mV \) to \(70mV \)

(values are strongly influenced by experimental parameters such as temperature, pH, pulse protocol)

Inactivation: no inactivation

Activators: \(cAMP > cGMP \) (both induce a positive shift of \(V_{0.5} \) in the range \(+10mV \) to \(+25mV \))

Gating inhibitors: ZD7288

Blockers: Cs+, ZD7288, ivabradine, zatebradine, alinidine

Radioligands: none

Channel distribution: thalamus, retina, olfactory bulb, sinus node, taste cells, testis

Physiological functions: pacemaker activity, resting potential, rebound depolarisations, control of synaptic transmission, transduction of sour taste

Mutations and pathophysiology: homozygous deletion of HCN4 is lethal at embryonic day 10 in mouse
The temporal sequence of conductances underlying a burst:
Activation of I_h;
Activation of I_t;
Na^+/K^+ Action potentials;
Inactivation of I_t and de-activation of I_h;
Removal of I_i inactivation (de-inactivation);
The temporal sequence of conductances underlying a burst:
Activation of I_h;
Activation of I_t;
Na^+/K^+ Action potentials;
Inactivation of I_t and de-activation of I_h;
Removal of I_i inactivation (de-inactivation);