11.6 Regulation of Transcription Factor Activity (p. 481-484)

1. expression and activity of TF
2. nuclear receptors
3. ligand dependent activation

How do different cells transcribe different genes?

1. TF expression
 - Extracellular signals
 - Extracellular signals

2. TF activity
 - proteins
 - hormones

Nuclear Receptors:
1. bind hormone
2. activate (usually) txn

Nuclear Receptor Response Elements

Homodimers	(a) GRE	5' AGAACAC(N)_3 TGTTCT 3'
	3' TCTTG(N)_3 ACAAGA 5'	
	(b) ERE	5' AGGTCA(N)_3 TGACCT 3'
	3' TCCAGT(N)_3 ACTGGA 5'	
	(c) VDRE	5' AGGTCA(N)_3 AGGTCA 3'
	3' TCCAGT(N)_3 TCCAGT 5'	
Heterodimers	(d) TRE	5' AGGTCA(N)_4 AGGTCA 3'
	3' TCCAGT(N)_4 TCCAGT 5'	
	(e) RARE	5' AGGTCA(N)_5 AGGTCA 3'
	3' TCCAGT(N)_5 TCCAGT 5'	
Heterodimeric nuclear receptors:
1. nuclear
2. bind DNA
3. repress txn in absence of ligand.
4. activate txn upon binding ligand. How?

Homodimeric nuclear receptors:
1. - ligand = cytoplasmic
2. + ligand = nuclear translocation
3. activation of txn. How?

11.7 Regulated elongation and termination of transcription (p. 485-486)
1. termination after PolyA
2. anti-termination (HIV)
 - Tat protein binds TAR RNA element
 - recruitment of kinase
 - elongation permitted
3. Pol II pausing (HSP genes)
 - Pol II transcribes, then pauses
 - binding of activated HSTF to prom-prox of hsp gene
 - elongation proceeds