DNA & DNA : Protein Interactions

BIBC 100
Sequence = Information

• Alphabet = language
 – L, I, F, E LIFE

• DNA = DNA code
 – A, T, C, G CAC=Histidine
 CAG=Glutamine
 GGG=Glycine

• Protein = Protein code
 – 20 a.a. LIVE ≠ EVIL
 L, I, F, E N → C N → C
DNA basics

- A DNA chain has polarity
- Just as for proteins we have \(\text{N} \rightarrow \text{C} \),

 Amino-end \quad Carboxy-end

 for DNA the base sequence is \(5' \rightarrow 3' \)

 5' OH unlinked \quad 3' OH unlinked

- Both proteins and DNA are polymers with sequence specificity and directionality
 - Protein: Polypeptide
 - DNA: Polynucleotide
What is a nucleotide?

• Nucleotide:
 – Base + Sugar + Phosphate
 A,G,C,T ribose, deoxyribose 3 phosphates

Nucleoside:
 – Base + Sugar
Four kinds of bases joined to a sugar-phosphate backbone

- **A** = Adenosine (purine) \(\rightarrow \) 2H bonds
- **T** = Thymine (pyrimidine) \(\rightarrow \) Length of H bond < 3Å
- **G** = Guanine (purine) \(\rightarrow \) 3H bonds
- **C** = Cytosine (pyrimidine)
Double stranded DNA

- Packed – right handed helical staircase (double helix)
- Rails: antiparallel sugar-phosphate chains
- Steps: Purine-Pyrimididine base pairs H-bonded
- Polarity: sequence 5’→3’ direction
 - ACG ≠ GCA
Types of DNA

• **B-DNA**
 – Most common
 – Right handed helices
 – 10 bp/turn
 – 1 full turn = 34 Å
 – Width of dsDNA 20 Å
 – Helical twist of \(\sim 36^\circ \)

• **A-DNA**
 – Right handed helices
 – Dehydrated dsDNA

• **Z-DNA**
 – Left handed helices
 – Alternating G-C content
Types of DNA

• **B-DNA**
 – Most common
 – Right handed helices
 – 10 bp/turn
 – 1 full turn = 34 Å
 – Width of dsDNA 20 Å
 – Helical twist of \(\sim36^\circ \)

• **A-DNA**
 – Right handed helices
 – Dehydrated dsDNA

• **Z-DNA**
 – Left handed helices
 – Alternating G-C content
dsDNA has Major and Minor Groove

- B-DNA has distorted helices
- Bases within the grooves exposed to solution
- Protein binds DNA within these grooves
 - binding of α helix of protein to DNA can bend DNA structure
 - Major groove binding most common
How Proteins recognize Genes

- Most genes are silent, unless specifically turned on

- **DNA → RNA → Protein**
 - Transcription
 - Translation

- **Switch Protein: Transcription Factor**
 - Activator
 - Repressor
 - Can be regulated by small molecule
Gene Activators and Repressors

• Main Controls of
 – Growth
 – Differentiation
 – Oncogenesis

• Recognition
 – Affinity
 – Specificity
(a) **Negative regulation**
Molecular signal causes dissociation of repressor from DNA, inducing transcription.

Repessor → DNA → Promoter → OFF

(b) **Negative regulation**
Molecular signal causes binding of repressor to DNA, inhibiting transcription.

Operator → ON → mRNAr

(c) **Positive regulation**
Molecular signal causes dissociation of activator from DNA, inhibiting transcription.

Activator → RNA polymerase → ON → mRNA

(d) **Positive regulation**
Molecular signal causes binding of activator to DNA, inducing transcription.

Activator binding site → OFF → mRNA

Figure 28-4
Lehringer Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Negative regulation
Molecular signal causes dissociation of repressor from DNA, inducing transcription.

Figure 28-4a
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Negative regulation
Molecular signal causes binding of repressor to DNA, inhibiting transcription.
Positive regulation
Molecular signal causes dissociation of activator from DNA, inhibiting transcription.

Figure 28-4c
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Positive regulation
Molecular signal causes binding of activator to DNA, inducing transcription.
Activators and Repressors

<table>
<thead>
<tr>
<th>LOCK</th>
<th>KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleotide Base sequence</td>
<td>Protein Motif</td>
</tr>
<tr>
<td>DNA</td>
<td></td>
</tr>
<tr>
<td>Edges at major and minor groove</td>
<td></td>
</tr>
<tr>
<td>• Helx-Turn-Helix</td>
<td></td>
</tr>
<tr>
<td>• Prokaryotes acts as dimer :HTH</td>
<td></td>
</tr>
<tr>
<td>• Eukaryotes acts as monomer:Homeodomain</td>
<td></td>
</tr>
<tr>
<td>• Metal Free</td>
<td></td>
</tr>
<tr>
<td>• Zinc-Stabilized</td>
<td></td>
</tr>
<tr>
<td>• Helix-turn- β-sheet</td>
<td></td>
</tr>
<tr>
<td>• Leucine-Zipper</td>
<td></td>
</tr>
</tbody>
</table>
DNA: Where?

- Only the edges of the nucleotides are accessible to the solvent or to protein, primarily in the major groove of the DNA double helix

Protein: How?

- Protruding groups from protein surface to contact nucleotides at base of groove
- Motifs
Helix turn Helix Motif

- 2 α helices connected by loop
- 2 motifs for functional binding
- 1 α helix from each motif interacts with DNA ~ 10 bp
 - Sequential interaction with back bone and base pairs dependent upon specificity
 - Interaction of Dimer bends the DNA
For Bacterial HTH

- DNA is distorted
- Protein is dimeric
- H-bonds between sugar-phosphate backbone and protein
 - anchor DNA to protein
- Sequence-specific recognition between DNA bases and \(\alpha\)-helix
- Recognition helices in dimer are separated 34\(\AA\) apart, i.e. one turn of B-DNA
- If one helix binds to major groove, the second binds (34\(\AA\)) to major groove one turn away
- DNA bends and can interact with other regions of protein
Allosteric Effects on Binding

Small Molecule that acts far from protein binding site with DNA causing a conformational change in the Recognition Helix.
Cap Binding Protein

- Cap: catabolite activating protein
- Activated by cAMP binding
- Dimer, binds major groove
- Both CBP & DNA are distorted upon binding
Zn Finger Motif

- 2 β strands + 1 α helix coordinated by Zinc ion
- 2 Cys + 2 His coordinate metal
- Highly conserved sequence esp. around coordination sites
- Functional interactions
 - 3 fingers wrapping around DNA along major groove
 - Dimer aligning motifs 34Å apart and interacting at major groove
Zn Finger interactions with DNA

1. Recognition helix positioning:
 DNA backbone to side chain of the loop
2. Base pair specific interactions with the Recognition helix side chains
Leucine Zipper

- 2 amphipathic α helices form coiled coil to stabilize dimer
- Distal, basic region on each helix interacts with major groove of DNA
Heptad repeats in Leucine Zipper

• 7 amino acid repeat stabilizes dimer interactions within the coiled coil
Figure 28-14

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company