Enzyme Catalysis-Serine Proteases

Concepts to be learned
• Activation Energy
• Transition State
• Example: Proteases
• Requirements for proteolysis
• Families of proteases
• Protein Folds used by proteases for catalysis
Catalysis

• Enzyme: increases rate of chemical reaction, decreases activation energy

• How?
 – Binding to the transition state of the substrate (L. Pauling 1946)

Reaction Path:

\[\text{Residues of Enzyme} \rightarrow \text{Substrate} \rightarrow \text{Product} \]
Linus Pauling, 1901–1994
Enzymes accelerate chemical reactions by decreasing the activation energy.
How to Lower ΔG^\neq
Enzymes bind transition states best

- The idea was proposed by Linus Pauling in 1946
 - Enzyme active sites are complementary to the transition state of the reaction
 - Enzymes bind transition states better than substrates
 - Stronger/additional interactions with the transition state as compared to the ground state lower the activation barrier

Largely ΔH^\neq effect
Covalent Catalysis

- A transient covalent bond between the enzyme and the substrate
- Changes the reaction Pathway

- Uncatalyzed: \[
\begin{align*}
A - B & \rightarrow A + B \\
\end{align*}
\]

- Catalyzed: \[
\begin{align*}
A - B + X : & \rightarrow A - X + B \rightarrow A + X : + B \\
\end{align*}
\]

- Requires a nucleophile on the enzyme
 - Can be a reactive serine, thiolate, amine, or carboxylate
Amino Acids in General Acid-Base Catalysis

<table>
<thead>
<tr>
<th>Amino acid residues</th>
<th>General acid form (proton donor)</th>
<th>General base form (proton acceptor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu, Asp</td>
<td>R—COOH</td>
<td>R—COO⁻</td>
</tr>
<tr>
<td>Lys, Arg</td>
<td>R⁺H</td>
<td>R—NH₂</td>
</tr>
<tr>
<td>Cys</td>
<td>R—SH</td>
<td>R—S⁻</td>
</tr>
<tr>
<td>His</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>R—OH</td>
<td>R—O⁻</td>
</tr>
<tr>
<td>Tyr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6-9
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Metal Ion Catalysis

• Involves a metal ion bound to the enzyme

• Interacts with substrate to facilitate binding
 – Stabilizes negative charges

• Participates in oxidation reactions
Enzymes accelerate chemical reactions by decreasing the activation energy.
Hydrolysis of Peptide Bonds

\[
\text{polypeptide} \quad \overset{\text{scissile bond}}{\longrightarrow} \quad \text{peptide 1} + \text{peptide 2}
\]
Serine Proteases

• Peptide bond cleavage by forming tetrahedral transition states:
 - First Stage: Acylation
 • “Acyl-enzyme intermediate” formed
 - Second Stage: Deacylation
 • “Acyl-enzyme intermediate” is hydrolyzed by water
Chymotrypsin uses most of the enzymatic mechanisms.
Chymotrypsin
Two anti-parallel β domains
Serine Proteases

- Rx: Peptide Bond Cleavage
- 4 Requirements
 - Catalytic triad
 - Ser, His, Asp
 - Ser forms a covalent bond with substrate → specific reaction path
 - His: accepts H\(^+\) from Ser, thereby facilitates bond formation, and stabilizes negatively charged transition state
 - Asp\(^-\): stabilizes positive charge of His\(^+\), increases rate ~10,000
 - Oxyanion binding site
 - Stabilizes transition state, forms 2 H-bonds to a negative oxygen of the substrate
 - Substrate specificity pocket
 - Recognition/identity (trypsin; chymotrypsin)
 - Non-specific binding site for polypeptide substrates
Aclylation and Deacylation of the Acyl-Enzyme Intermediate
Serine Proteases

- Rx: Peptide Bond Cleavage
- 4 Requirements
 - Catalytic triad
 - Ser, His, Asp
 - Ser forms a covalent bond with substrate → specific reaction path
 - His: accepts H⁺ from Ser, thereby facilitates bond formation, and stabilizes negatively charged transition state
 - Asp⁻: stabilizes positive charge of His⁺, increases rate ~10,000
 - Oxyanion binding site
 - Stabilizes transition state, forms 2 H-bonds to a negative oxygen of the substrate
 - Substrate specificity pocket
 - Recognition/identity (trypsin; chymotrypsin)
 - Non-specific binding site for polypeptide substrates
Tetrahedral Transition State
Active Site of Chymotrypsin with Substrate

Figure 6-19bcd
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Chymotrypsin Mechanism

Step 1: Substrate Binding

When substrate binds, the side chain of the residue adjacent to the peptide bond to be cleaved nestles in a hydrophobic pocket on the enzyme, positioning the peptide bond for attack.
Chymotrypsin Mechanism

Step 2: Nucleophilic Attack

Interaction of Ser195 and His57 generates a strongly nucleophilic alkoxide ion on Ser195; the ion attacks the peptide carbonyl group, forming a tetrahedral acyl-enzyme. This is accompanied by formation of a short-lived negative charge on the carbonyl oxygen of the substrate, which is stabilized by hydrogen bonding in the oxyanion hole.

Figure 6-22 part 2
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Chymotrypsin Mechanism
Step 3: Substrate Cleavage

Instability of the negative charge on the substrate carbonyl oxygen leads to collapse of the tetrahedral intermediate; re-formation of a double bond with carbon displaces the bond between carbon and the amino group of the peptide linkage, breaking the peptide bond. The amino leaving group is protonated by His57, facilitating its displacement.

Figure 6-22 part 3
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Chymotrypsin Mechanism

Step 4: Water Comes In

An incoming water molecule is deprotonated by general base catalysis, generating a strongly nucleophilic hydroxide ion. Attack of hydroxide on the ester linkage of the acyl-enzyme generates a second tetrahedral intermediate, with oxygen in the oxyanion hole again taking on a negative charge.
Chymotrypsin Mechanism

Step 5: Water Attacks

Short-lived intermediate * (deacylation)

Acyl-enzyme intermediate

Collapse of the tetrahedral intermediate forms the second product, a carboxylate anion, and displaces Ser\textsubscript{195}.

Figure 6-22 part 5
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Chymotrypsin Mechanism

Step 6: Break-off from the Enzyme

Figure 6-22 part 6
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Chymotrypsin Mechanism

Step 7: Product Dissociates

Dissociation of the second product from the active site regenerates free enzyme.

Figure 6-22 part 7
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company
Chymotrypsin

• 2 domains
• Each domain: antiparalleled \(\beta \) -barrel, six \(\beta \) -strands

\[\begin{align*}
4 (1-4) & \quad 2 (5,6) \\
\text{Greek Key Motif} & \quad \text{\(\beta \) -hairpin} \\
\text{Loop 3-4} & \quad \text{Loop 5-6}
\end{align*} \]

• Active Site: 2 loop regions from each domain
• Substrate specificity pocket- Aromatics
 – Trypsin: R or K
 – Elastase: Pocket blocked small uncharged
Chymotrypsin
Two anti-parallel β domains
Specificity Pocket

Chymotrypsin

Gly 226
Ser 189

Gly 216

Trypsin

Gly 226
Asp 189

Gly 216

Elastase

Thr 226
Val 216

©1999 GARLAND PUBLISHING INC.
A member of the Taylor & Francis Group
Bacterial Subtilisin: α,β type
(J. Kraut, UCSD)

- 4 α helices surrounding 5 parallel β-strands
- Active site:
 - C-end of the central β-strands
 - Catalytic triad: S,H, D

Carboxypeptidase: (catalysis by induced electronic strain on substrate)

Zn$^{2+}$ Protease
- Glu 270 directly attacks the carbonyl carbon of the scissile bond to form a “covalent mixed-anhydride intermediate”
- Zn$^{2+}$ binding \rightarrow polarizes the carbonyl
- “environment”, non-polar, induced dipole
- Facilitates hydrolysis by water
Subtilisin
Active Site of Subtilisin
Serine Proteases

• Peptide bond cleavage by forming tetrahedral transition states:
 - First Stage: Acylation
 • “Acyl-enzyme intermediate” formed
 - Second Stage: Deacylation
 • “Acyl-enzyme intermediate” is hydrolyzed by water
Enzyme Catalysis-Serine Proteases

Concepts to be learned

• Activation Energy
• Transition State
• Example: Proteases
• Requirements for proteolysis
• Families of proteases
• Protein Folds used by proteases for catalysis